Overcoming HSP27-mediated resistance by altered dimerization of HSP27 using small molecules
نویسندگان
چکیده
Heat shock protein 27 (HSP27, HSPB1) is an anti-apoptotic protein characterized for its tumorigenic and metastatic properties, and now referenced as a major therapeutic target in many types of cancer. The biochemical properties of HSP27 rely on a structural oligomeric and dynamic organization that is important for its chaperone activity. Down-regulation by small interfering RNA or inhibition with a dominant-negative mutant efficiently counteracts the anti-apoptotic and protective properties of HSP27. However, unlike other HSPs such as HSP90 and HSP70, small molecule approaches for neutralization of HSP27 are not well established because of the absence of an ATP binding domain. Previously, we found that a small molecule, zerumbone (ZER), induced altered dimerization of HSP27 by cross linking the cysteine residues required to build a large oligomer, led to sensitization in combination with radiation. In this study, we identified another small molecule, a xanthone compound, more capable of altering dimeric HSP27 than ZER and yielding sensitization in human lung cancer cells when combined with HSP90 inhibitors or standard anticancer modalities such as irradiation and cytotoxic anticancer drugs. Therefore, altered dimerization of HSP27 represents a good strategy for anticancer therapy in HSP27-overexpressing cancer cells.
منابع مشابه
Sensitization of lung cancer cells by altered dimerization of HSP27
Heat shock protein 27 (HSP27, HSPB1) induces resistance to anticancer drugs in various cancer types, including non-small cell lung cancer (NSCLC). Therefore, pharmacological inhibition of HSP27 in NSCLC may be a good strategy for anticancer therapy. Unlike other HSPs such as HSP90 and HSP70, small molecule approaches for neutralization of HSP27 are not well established because of the absence of...
متن کاملUp-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism.
17-Allylamino-demethoxygeldanamycin (17-AAG), currently in phase I and II clinical trials as an anticancer agent, binds to the ATP pocket of heat shock protein (Hsp90). This binding induces a cellular stress response that up-regulates many proteins including Hsp27, a member of the small heat shock protein family that has cytoprotective roles, including chaperoning of cellular proteins, regulati...
متن کاملHsp27 Inhibition with OGX-427 Sensitizes Non-Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy.
Non-small cell lung cancer (NSCLC) is the most frequent cause of death from cancer worldwide. Despite the availability of active chemotherapy regimens and EGFR tyrosine kinase inhibitors, all advanced patients develop recurrent disease after first-line therapy. Although Hsp27 is a stress-induced chaperone that promotes acquired resistance in several cancers, its relationship to treatment resist...
متن کاملThe molecular and clinical verification of therapeutic resistance via the p38 MAPK–Hsp27 axis in lung cancer
UNLABELLED Treatment failure followed by relapse and metastasis in patients with non-small cell lung cancer is often the result of acquired resistance to cisplatin-based chemotherapy. A cancer stem cell (CSC)-mediated anti-apoptotic phenomenon is responsible for the development of drug resistance. The underlying molecular mechanism related to cisplatin resistance is still controversial, and a n...
متن کاملHeat shock protein 27, a novel regulator of 5-fluorouracil resistance in colon cancer.
The resistance of colon cancer to 5-fluorouracil (5-FU) is a critical issue, and the cause of this resistance cannot always be explained based on the known molecules. Heat shock protein 27 (HSP27) mRNA expression has recently been shown to be correlated with 5-FU resistance in 5-FU-resistant cell lines. In this study, we attempted to elucidate the functional mechanism of HSP27 in 5-FU resistanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016